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4-Dimethylaminopyridine-N-oxide 2 and 2',3',5'-triacetyladenosine-N1-oxide 4 are partially deoxygenated by 
dimethyldioxirane (DMD) to the corresponding amines 1 and 3; the formation of singlet oxygen suggests a polar 
rather than a radical mechanism, in which we propose SN2 attack of the N-oxide on the dioxirane peroxide bond. 

The mechanism of N-oxidation of heteroarenes of the pyridine 
type has been recently established1 to be an S N ~  attack of the 
nitrogen lone pair on the peroxide bond, to afford usually high 
yields of N-oxides. However, here we provide cogent experi- 
mental evidence that at least in some cases the resulting N-oxide 
efficiently decomposes the dioxirane with liberation of oxygen 
gas and regeneration of the heteroarene. 

An optimal case concerns the DMD oxidation of 4-dimethyl- 
aminopyridine 1 to its N-I-oxide 2. While 1.0 equiv. of DMD 
led to 57% conversion, 3.0 or 5.0 equiv. reached maximally 
84% N-oxide. Nevertheless, the DMD was consumed within a 
few minutes at 0 "C with gas evolution. By means of a gas 
burette, the expected amount (ca. 4.3 equiv.) of oxygen gas 
evolution was established. The suspicion that the N-oxide 2 
decomposed the dioxirane was confirmed by the reaction of the 
authentic N-oxide with DMD; thus, the use of 1 , 2  and 5 equiv. 
of DMD led to the same mixture of 84: 16 (N-oxide-amine) 
under oxygen gas liberation. These experiments are sum- 
marized in Fig. 1. 

If the deoxygenation of N-oxides by dioxirane proceeds also 
by an S N ~  attack of the nucleophilic N-oxide oxygen atom on 
the dioxirane peroxide bond, the mechanism in Scheme 1 
should apply. The proposed dipolar intermediate should lead to 
singlet oxygen in this novel deoxygenation, as is observed in 
other heterolytic dioxygen-producing processes, most pro- 
minently the chemiluminescent decomposition of hydrogen 
peroxide by hypochlorite ion2 and triphenyl phosphite ozonide.3 
Thus, as a crucial test for the postulated singlet oxygen 
generation (Scheme l) ,  we searched and, indeed, observed the 
expected dimol visible [eqn. (l)] and monomol IR [eqn. (2)]  
chemiluminescence4 in the N-oxide-promoted decomposition 
of dimethyldioxirane. 

02('A,) + 02(lA,) -+ 2 O2 (3C,-) + hv (634 and 703 nm) 
(1) 
(2) 02(lAg) --+ O2 (3Zg-) + hv (1268 nm) 

Equilibrium mixture: 
84% N-oxide: 16% amine 

Oxidation 

Fig. 1 Oxidation of 4-dimethylaminopyridine 1 and deoxygenation of its N- 
oxide 2 by DMD 

The monomol emission of 102 in the DMD-N-oxide reaction 
was measured by means of a liquid nitrogen-cooled germanium 
photodiode detector5 (800-1800 nm) with a bandpass filter for 
1270 f 10 nm.t The intensity of the IR chemiluminescence was 
solvent dependent, i.e. the relative intensities were 
1.0 : 0.38 : 0.088 in acetone, acetone-methanol (33.8 : 66.2) and 
acetone-water (33.8 : 66.2), which is in agreement (r2 = 0.967) 
with the singlet oxygen lifetimes in these solvent mixtures6 
Since the N-oxide 2 concentration remains constant (it is also 
continuously reformed by oxidation of the amine until all DMD 
is consumed), pseudo-first-order kinetics of the infrared 
chemiluminescence emission applies, as manifested by a plot of 
log ( I / Io)  against time (r2 = 0.999). 

2',3',5'-Triacetyladenosine 3 was oxidized at the N-1 posi- 
tion, which is known to be the most nucleophilic site in 
adenosine.7a However, analogously to 4-dimethylaminopyri- 
dine 1, the N-oxide 4 was incompletely formed. Even with a 
five-fold excess of DMD only 62% conversion was observed, 
but the dioxirane was consumed with oxygen gas evolution 
(Scheme 2). Indeed, when the adenosine N-oxide 4 was treated 
with 5.0 equiv. of DMD at 20 "C in CH2CI2, the same 62 : 38 N- 
oxide-adenosine mixture was observed as had been found in 
the oxidation of the adenosine 3 to the N-oxide 4 (Scheme 2). 
Presumably also in this case singlet oxygen is produced, a novel 
pathway for 102 generation with interesting implications in 
biochemical systems.7b 

In summary, we suspect that the deoxygenation of N-oxides 
by dimethyldioxirane with '02 evolution may be a more general 
phenomenon that previously recognized. In this context, 

hv (634,703 and 1268 nrn) 

Scheme 1 

4 62% conv. 3 

Scheme 2 
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Murray8 already in 1989 and recently Messeguer and cowork- 
ers9 brought attention to the fact that DMD is decomposed by N-  
oxides, but the formation of singlet oxygen was not demon- 
strated. 
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Footnote 
+ The I 0 2  production was calibrated by the thermolysis of the disodium 
3,3‘-( 1,4-naphthylidene)dipropionate endoperoxide (NDPOZ).~ Thus, in the 
reaction of N-oxide 2 (0.24 mmol dm-3) with DMD (7.0 mmol dm-3) in 
methanol-acetone (1 1 : 1) at 37 “C. ca. 5% of the total oxygen gas evolved 
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was produced as lo2 when compared with the NDP02 standard (7.5 
mmol dm-3 produced 62 pmol dm-3 lo2 min-1). 
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